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In this work we give an algorithm to express as a convergent series the stationary 
averages for a class of gradient perturbations of a nonsymmetric (nongradient) 
Ornstein-Uhlenbeck process. The method relies on a cluster expansion in time 
of the Girsanov-Cameron-Martin formula for the density of the perturbed 
measure with respect to the Ornstein-Uhlenbeck measure. In the second paper 
of this series, the approach is extended to more general perturbations. 
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stationary measure; cluster expansion; nongradient systems, Girsanov theorem. 

1. I N T R O D U C T I O N  

The developments of quantum field theory and statistical mechanics in the 
last decades have introduced in probability theory new constructive 
methods which are very effective not only in proving existence theorems, 
but also in explicit calculations of quantities of interest. The new techni- 
ques, however, have been applied only occasionally to traditional topics in 
probability theory. One must also add that methods developed in connec- 
tion with physical problems are often heavy and not very palatable to 
mathematicians. 

A subject in which a constructive point of view has proved to be very 
useful is the theory of stochastic partial differential equations arising in 
various areas of natural sciences. These equations are often too singular to 
be approached by well-established general methods and require new ideas 
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which are largely introduced on the basis of physical intuition. Renormal- 
ization theory, for example, has been instrumental in proving the existence 
of weak solutions for a class of reaction-diffusion equations in two space 
dimensions perturbed by an additive white noise in time and space. I ~-31 

This is the first of a series of papers in which constructive methods 
from field theory and statistical mechanics will be applied systematically to 
the study of stochastic differential equations both  ordinary and partial with 
the aim of computing their asymptotic stationary properties. 

The construction of the invariant measure or of the equilibrium corre- 
lation functions for diffusion processes described by stochastic ordinary or 
partial differential equations (SODE or SPDE) is in general a difficult 
problem. In the case of SODE the invariant measure can be obtained in 
principle by solving the stationary Fokker-Planck equation (Kolmogorov 
forward equation), but in practice this is trivial for gradient systems with 
constant diffusion, while no systematic method is known for more general 
situations. For SPDE, the Fokker-Planck equation becomes a functional 
equation and the situation is even worse. The stochastic quantization of 
gauge theories, however, gives rise just to a problem of this kind. 151 

For the existence of stationary solutions one has general criteria like 
the well-known Hasminski 161 nonexplosion test. This, however, has two 
drawbacks. On one hand it is nonconstructive, i.e., it does not give any 
algorithm to calculate the stationary solutions. Then, it requires that the 
equations under study have strong solutions and this is seldom the case for 
the most interesting SPDE. 

One is therefore tempted to look for more direct approaches to this 
important problem. 

To explain our point of view let us consider as an example a system 
in R" of the form 

dX, = - A  X, dt + G(X,) dt + dW, (1) 

where A is an n x n matrix and G a smooth, but in general unbounded 
function of X. 

Suppose we want to calculate an expectation 

Exo(F(Xr)) (2) 

where X 0 is the initial condition and Xr  is the solution at time T of (1). We 
assume for the time being that (1) has strong solutions. Suppose now that 
the linear part of (1), i.e., the process described by the equation 

dY ,=  - A Y , + d W ,  (3) 
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is stable and tends to a stationary solution as t --* oo. This is easily estab- 
lished in term of the spectral properties of A. We can rewrite (2) using 
Girsanov theorem (see, e.g., ref. 4) 

where 

Exo(F(Y r) e re) (4) 

~r= ;: (G(Y,), dWs)--  �89 I :  [IG(Y~')l[2ds (5) 

Now, we ask the question: is it possible to study the large-time behavior 
of (2) using the explicit form (4) in terms of the process Y,? 

In this formulation our question recalls the problem of taking the 
infinite-volume limit in constructive quantum field theory, for wich power- 
ful tools have been developed. ~7-1~ 

This is the first of two papers in which we will show how the idea of 
cluster expansion can be applied to an expression like (4). This will yield 
a convergent expansion, uniformly in T, for a wide class of equations. 

The main difficulty in adapting the field-theoretic techniques to an 
expression like (4) comes from the stochastic integral in the exponent (5). 
For this reason we shall consider first the simpler case in which 

G =  - V V  (6) 

so that the stochastic integral can be explicitly performed. Let us emphasize 
that this choice of G does not imply that our system is gradient: in fact we 
have not supposed A symmetric. In a subsequent paper we shall allow a 
nongradient part in G, but we hall still require that the global stability be 
ensured by a potential function V as in ref. 3. 

Let us examine more closely the class of equations with G of the form 
(6) that can hopefully be discussed within our approach. 

The stochastic integral in (5) can be easily performed and we obtain 

T T 

~T=-(V(Yr)--V(Yo))+to LV(Y.~)ds--�89 ~ IlVV(Y.,.)ll2ds (7) 

where L is the generator of the process (3), that is, 

LV(Y)=�89 VV) (8) 

Therefore in order that e ~r be bounded for any finite T, it is sufficient to 
have, VX, two positive constants cl and c~_ such that 

V(X)> - e l  (9) 

LV-~llVVII 2 ' 2 =~AxV-(AX, VV)-�89 <c2 (10) 
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It is interesting to compare (10) with the condition that V be a stochastic 
Lyapunov function for Eq. (1). This condition can be written 

�89 V-(AX, VII)-Ilv VII-' < c : - f ( X )  ( l l )  

with f > 0  and l im lx l_+~ , f (X)=  Go. This coincides with (10) if we take 
f ( X ) =  �89 []VVI[ 2 when [IVV][ 2 diverges at infinity. However, in general (11) 
and (10) do not have the same content. 

It is interesting to remark that (9) is a condition independent of (10). 
In fact (10) is compatible with potentials unbounded below, as the example 
for X~ R, 

V(X)= - �89 + 1) (12) 

shows. 
We conclude this introduction by emphasizing the nontriviality, as far 

as the equilibrium measure is concerned, of the class of stochastic systems 
considered in this paper. The invariant measure of the process (3) is given 
by a Gaussian density 

p o = c e x p [ -  �89 M - ' X ) ]  (13) 

where M is a symmetric matrix satisfying 

A M + M A T = I  (14) 

One can be tempted to look for an invariant measure for the process (1) 
of the form 

P = P o P l  = c ' p o  exp[ - 2 V(X)] (15) 

Using the Fokker-Planck equation, it is easy to see, however, that (15) can 
be an invariant measure only if the orthogonality condition is satisfied, 

VV. [ ( - M  -~ + 2 A ) X ]  = 0  (16) 

This implies that V V can be different from zero only on ker(2A - M - ' ) .  So 
V must be constant except on linear subspaces of lower dimensions. Since 
we have assumed V at least twice differentiable, it must be constant 
everywhere and therefore trivial. 

The stationary measure corresponding to the process (3) is the 
Gaussian measure generated by the covariance 

O( t l  - t z )  e - AItl - ' Z ~ M  + O( t~_ - t 1) M e  -Ar~ '2 - t l~  (17) 
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This matrix is symmetrical in the exchange of t~ and t2 and the transposi- 
tion of indices. 

The heart of the method we propose is combinatorial and does not 
depend on the system being gradient or not, finite dimensional or infinite 
dimensional. Therefore we shall illustrate it in the simplest possible situa- 
tion, that is, a one-dimensional stochastic differential equation for which 
the answer is known in advance. At the end we shall indicate the obvious 
steps to adapt the method to nontrivial cases. 

2. THE  M O D E L  A N D  R E S U L T S  

We will develop our approach on a very simple one-dimensional 
model, i.e., the random variable 0.,. is in R. We also choose A = 1/2 and the 
drift is a third-order polynomial. More explicitly, the stochastic equation is 

1 ~ ' 3  �9 
(18) 

where" 4. 4 .~, .  = ~ b , - - 6 ~ + 3  and : ~  =~b~-3~ , .  
According to the Girsanov formula, one is interested in the limit when 

T-~ ~ of quantities like 

E T = E4,o(F(~T) e ~') (19) 

where F is typically a polynomial and 

~ r =  --~ :~.~'" dw.,. --~- (:~b2:) 2 as (20) 

and 4), is the one-dimensional Ornstein-Uhlenbeck process, that is the 
solution of ~, = - ,_-~b, + n',, with initial condition ~bo: 

~, = e- ' /2~o + e-( ' -") /2  dw,. (21) 

We will prove the following theorems. 

T h e o r e m  1. Let q~o be an arbitrary real number and F a polyno- 
mial; then, for ), small enough, independently of ~bo and F, the following is 
true: 

1. E~(,(F(q~T) e Cr) can be expressed as a convergent series uniformly 
in 7'. 
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2. The  quant i ty  

(F(~b)) = lim E~o(F(q~r) e r 
T ~ ~ 

is expressed as a convergent  series. 

3. (F(~b)) does not  depend on q~o. 

Let us consider  n po lynomia ls  FI ..... F ,  and  n t imes tl ..... t,,, ti>~O, 
i = 1 ..... n and let t = supi t;. Then we have the following result. 

Theorem 2. F o r  2 small enough,  independent ly  of  ~b o, there exists 
a s ta t ionary  measure  p defined for a rb i t ra ry  t;, i = 1 ..... n, by 

f dp F,(O,,) -F.(O,.) lira E,~o(F,(~br+,0-- er+, . . . .  F.(~b r+ , . )  e ) 

whose t runcated correlat ions satisfy an exponent ia l  cluster proper ty .  The  
decay t ime is smaller  than  8. As in T h e o r e m  1, the limit is expressed as a 
convergent  series and is independent  of  the initial condit ion.  

Since the drift is a po lynomia l  o f  variables  lying in a one-dimensional  
inner space, one can per form the stochastic integral, using the I to  formula,  
and get 

T T T 
If0 d:~4 '  I('~4T[ ' 4'~0:) / f o .  4 ds+ fo "~ 3" . . . .  _ 4b.,. : . . , .  d w , . .  ( 2 2 )  

Therefore  

(23) 

The expectat ion value of  F(~b,)e ~' is taken with respect to a Gauss ian  
measure  P c  of  mean  ~b ~ = e-U2q~o and covar iance  

C(t, s) = e-~l /2Jl ' - ' l (  1 - e - i"r"'''l) (24) 

To prove  the theorems,  we will define an expansion which shows that,  
for all T, E~0 is uniformly bounded  and satisfied the Cauchy  convergence 
criterion. 
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Remark. As will be clear from the proofs, the above statements are 
uniform in the initial condition ~b 0 as long as this varies in a compact. For 
the special model equation under study one has exponential convergence in 
time to the invariant measure uniformly for all values of ~bo due to the fast 
growth of the drift at infinity. Our result therefore is not the strongest 
possible for this case. The expansion, however, covers a wide variety of 
equations for which such a strong uniformity in the initial condition is not 
expected. The uniformity in F can be presumably extended to a much 
larger class of functions. 

3. THE EXPANSION 

The expansion is a kind of cluster expansion defined in such a way 
that one tries to decouple intervals of time containing the final time T from 
the other time interval. In this way, one will have to estimate finite-time 
expressions. The couplings to the whole time interval will be small because 
of the smallness of the coupling constant. 

The expansion will be constructed in such a way that the expressions 
which are decoupled from the final time T are of the form E~0(e r for some 
time t~ [0, T]. Therefore, according to the Girsanov theorem, they are 
equal to 1. 

3.1. The Init ial  Step 

To define the initial step one introduces an interpolating parameter s~, 
s~ ~ [0, 1 ]. Define the characteristic functions 

X k j ( s ) = x ( s ~ ] j , k ] )  for k > j > ~ l  

Zj(s) = Xj, i - ,  (s) = X(s ~ ] j  - 1, j ] ) 

and 

Thus, for example, 

Z~k~(s) =X(s ~ [0, k])  

g~ rl(s) =Zr(s) +Xlr-~(s) 

Then we introduce the interpolating covariance 

C(s~)( t, s)= [xT(t) C( t, s) zr(s) 

+ (1 - -Xr)( t )  C(t, s)(1 --Zr)(S)](1 - - s l )  + C(t, s) sl (25) 
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and the interpolating "final" condition 

(26) 

Replacing in the measure the covariance C by C(s~) and in ~T, (fi~" by 
~b]-(Sl), thus ~r by ~r(S~), we obtain that E~o becomes a function E~o(s~) 
of sj. Our starting expression is therefore E~0(l). 

The first step of the expansion is obtained by writing 

where 

and 

d T e~o(l)=E~o(O)+ -~s E,T(s,)ds,=I, E4o+ D,E~o (27) 

I ,E~E~(O)  (28) 

I d r 
Dt E~o= ;o -~s E 4,,,(s~) dst (29) 

The Term I~. Because of our choice of characteristic func- 

CT,~- ,=-~  T-," "~ - Y  T-, - i  :~:  

;~ I:- '  ;3 I:- '  :)2 cT_,=-~ :~. ds-y  (:02 as 

2 - ~ : ~ _ ,  +~:4~: 

= --~ :~2"dw.~--g (&:)-' d~ (30) 

where 

3 . 1 . 1 .  

tions, C(0) is a direct sum of two terms, zCx and (1 -X)  C(1 -X).  Thus the 
measure factorizes, 

d~c = d~lzcx" d~, -z~ c~L -z, 

Correspondingly, one writes 

~T=~T.T_I-]-~T_I 
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Since iU(l_z)c(1--Z) is an Ornstein-Uhlenbeck measure restricted to the time 
interval [0, T -  1 ], one has 

11E~0(F(~b r) e er) = Ec, u(eer-' ) E~0(F(~b r) e er.r-') 

= E,0(F(~b r) e eT'T-' ) (31) 

where the factorization arises from the support property of the charac- 
teristic functions. 

It is now easy to show that 

lim E~o(F(~br) e r = ESt(F(~bl) e r (32) 

where E st means the Gaussian expectation with respect to the stationary 
covariance 

Cst( l ,  S) = e -It-sl/2 
and 

~fO ~g2fO ~ 4 ~- - - -~  :q~:ds-y  ( :~: )2  d s - g  :~1: 

Equation (32) is very interesting because the expectation is restricted to 
trajectories over a finite time interval and the corrections arising from the 
term D~ are of order 2, as we show in the next subsection. 

3 .1 .2 .  The  Term D1. The derivative of E~0(Sl) gives 

d d d~reerdpc~s, ) f -~sl E~~ ds' = f (-~sl dl'tc'"') F(q~r,e'r dSl + f F(~r'-~s 1 dsl 

= A l  + B i  (33) 

3 .1 .3 .  The  Term Am. As is well known (see, for example, ref. 7). 

d 1 d J J 

and 

dC(sl ) 
- - ( u l ,  Vl)= (1 -Xr)(ul) C(u., vl) Zr(vl) dst 

+Xr(Ul) C(ut, vl)(l -Xr)(V~) 

822/83/5-6-21 
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which is symmetrical. Thus, 

A, = f "" f XT(Ut) C(ui, Vl)(1--XT)(V~) 

• F(fbr)~-~,,, eCr dl~cts"dut dv' dst 

T - - 2  

= 

j = 0  

xo~b,---~ F(~T)~,, e CT dltc, s,,du t dv, ds, 

T - - 2  

= ~ At(j)  (34) 
j = 0  

We shall refer to [ j ,  T ]  as the support of At( j) .  

3.1.4. The Term B1. We have 

Bt = ~ ~ F(~r) :~b4_ t" eCr dpc,.,.,, dst (35) 

In conclusion, the term D I is of order 2 uniformly in T (as will follow from 
the ensuing discussion). 

3.2. The Next Step 

The expansion ends for the It term. The A~ and the Bt terms are 
expanded further. 

3.2.1. The Next Step of the Expansion for the A1 Term. 
The A~ term is a sum of terms Ax(j) , j=O ..... T - 2 .  We describe the expan- 
sion for A t(JJ) for some j r ,  0---<Jr < T -  1. As for the first step, we introduce 
an interpolating parameter s2 and define an interpolating covariance 
C(st, s2) which will help us to test to what extent the interval ]Jr ,  T] ,  the 
support of A(jn), is connected by a covariance to its complementary set in 
[0, T] ,  

C(sl, s2)(t, s) = [Zr4~(t) C(sl)(t, s) Xrj,(s) 

+ ( 1 --Xr.y, )(t) C(s, )(t, s)( 1 --Xr./,)(s)]( 1 -- sz) 

+ C(s, )(t, s) s2 (36) 
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We also introduce 

r s2) = r (I - - s ,  ) 0 4 _ ,  + (I -- s2) 0; 4 

and therefore an interpolating {T(S,,S2); A6 j , )  is the value at s,_= 1 of 
Ai(j))(s2) and we rewrite it as 

A l ( J l )  = IzA l(Jl) + D2A)(jl) 

3.2 .2 .  T h e  T e r m  la,41(111. The G_AI(jl ) term factorizes as 

I2A )(Jl) = f E*~162 E~*~162 eCr'/'("*'~ dsl (37) 

where 

and 

with 

P 2 ( r  f "" f XT(Ul) C(Ul,1)l) Xjl+l(I)l) 

x F(r r) ~ e "r./, du, dr, 

X - - .  ' du I dvt 6r &,, 

CT(s~, 0) = ~rj,(s,, 0) + ~j, 

)" t 'T 4 ~2 t. T 3 is, ,ol=-aj,,  :<.: ds--cj;, 

2 
- . ~ r - , ' )  - ~ ( : # : + ( I  st) "4 

)" f/' 22 ~J' )2 
r ds 

2 4 '~ - ~  : G + ~  :r 

- 2Oo :G:dw"--8-Oo (:C:)'-& 

38) 

(39) 
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In the last step, we have used the fact that, in [0 ,  j l  ] ,  ~b s is an Ornstein-  
Uhlenbeck process. 

Thus by the Girsanov formula 

IzA,(jl) = f E~o(P2(~) e Cr''') dsl (40) 

3.2.3. The Term D2AI(jl). This is a sum of terms 

Jl - I 

D2A1(J~)= ~ At,2(Jt,J2) 
J2 = 0 

where 

(41) 

A,.2(j,,j2) 

= I dpc,.,.,..,.,, {I.{ du,_dv2Zr.j,(u2) C(u2, v,_)(s,) 

fi fi [ffdu, dv, ZT(U,)C(u ' vl)Zi,+,(v,) 

x b-~,l (F((ar) ~ eCr'"'"-') ] } ds, ds 2 (42) 

The interval [J2, T] is called the support  of A l.z(Ji,J,_). 
3.2.4. The Next Step of the Expansion for the B1 Term. 

This term which resembles the initial term, with the function to evaluate 
F(~r)  replaced by 2F(~br) -q~r-" 4 ~-," is smaller than the initial term since it 
has a 2 in front of it. We will consider it as a term with support  I T - 2 ,  T] .  
Therefore we will apply to it the initial step of the expansion, with Xr 
replaced by ZT.r-2  and 

~b4(s,, s,_) = ~b~-+ ( 1 _ s,)  ~b4r_, + (1 _s,_)ckr_24 
The formulas are then the same as for A t ( T - 2 ) .  

3.3. The Generic Step 

At the end of the ( k - 1 ) t h  step, one has an interpolated covariance 
C(s~ ..... Sk_~). At each step an st is introduced and the corresponding 
operation D~ leads to a sum of terms labeled by an integer Jr if we are deal- 
ing with an A term, or to one term if it is a B. To simplify the notation, 
we introduce /3(j/), which stands for both A and B, with jr<j1_, if A is 
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chosen and j l = j l _ l - 1  if B is chosen. Thus, for a given term made 
of D's, to s~ ..... Sk-~ is associated a multiple sum over j~ ..... J k - l  with 

T>Jl  > "'" >J,',--1. 
One now introduces the new parameter  s k. 
By definition, 

C(s~ ..... S k ) ( t , s )  

= [ Z a ~ _ , ( t )  C(s~ ..... sk_ i)(t, s ) z ~ _ , ( s )  

+ ( 1 - Z ~ _ , ) ( t )  C(sl ..... Sk_l)(t, S ) (1 - -Z~_ , (S ) ] (1 - -Sk )  

' t -C( s I  ..... Sk - - l ) ( t ,  s) sk (43) 

and 
k 

r ..... s k ) = r 1 6 2  
1 

with J0 = T -  1. 
One introduces this new dependence in the last nonfactorized term of 

the expansion 

I 

sT fo . . .  r _ D  ..-Dl r Dk-I D t E r  k-I  

=( lk  + Dk) Dk_,  ""DiEgo 

dsk j~k Dk_ l " D1E r 
�9 6 o  

(44) 

Formally, the expansion at the kth  step has the form 

ET~o=IIE2o+I'D,E~,+- .. .  + IkD k _ , . . . D , E 2 o + D k . . . D I E ~ o  (45) 

where 

I ,  Dk_l  "" DtEr  r 

= ds j . . ,  dSk-I dSk_l dsl dltcl"' ....... k~F(r e I.,-k=O 

= Z Z IkDk '(Jk-- ') ' ' ' f f ) ' (J '  )ET  
- -  Go 

T > j I >  - . -  ~ ' j k - I  ~ = A o r B  
(46) 

The exponent, as far as the time interval [ j , _  ~, T ]  is concerned, is, for a 
given choice o f j l  ..... Jk - l ,  reduced to 
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CT, jk_I(SI . . . . .  S/c-- l)=--  ~ - ,  :$4:ds---ff _, (:$2:)zas 

2 4 
. . . . .  (47) 

which corresponds to a localization in Z/,._,+, at the ( k - 1 ) t h  step. The 
interval ] j k _ , , T ]  will be called the support of IkDk_~(jk_,)-'" 
/3 ] ( j l )  E4r0. 

Remark that since each step localizes the support at least one unit 
interval to the left, then J k - ~ <  T- -k .  

Similarly, 

E T DkDk_, -"DI  ~,, 

d 
f d#o~, s~, F(~br) eCr('~" k) 

d s  I . . . . . .  
(48) 

with 

~r(s] ..... Sk)= --4 " '"" 8 (:r 

2 2 
. . . . .  (49) 

Terms like D,~D~_ j . . .  DiE~ r can be written as sums, over the localization 
indices JJ ..... j,, with j , ,  <Jl if m < L o f /3 , , ( j , ) / 3 ,_  j(j,,_ i ) "" /31(J , )  E~o- 

The expansion ends when Xr.j,=Zcr), i.e.,jk =0 ,  that is, at most after 
T steps. 

We will show in the next section that for 2 small enough there exist 
two constants K > 0 and p < 1 such that 

E T IIkD~._l"-Dl ,>01 < KIt k-I  (50) 

uniformly in T. 

4. THE B O U N D S  

.Our first task is the Wick bound, i.e., a bound on e r After giving the 
lemmas useful to bound the various terms produced by the expansion, we 
obtain an estimate on the number of terms generated by the expansion and 
finally prove the announced result. 
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4.1. The Wick Bound 

According to the form of the generic term of the expansion, we need 
to bound eCT.4 We are therefore looking at an upper bound for (r . j .  Since 
this term is made of Wick polynomials, we use 

4 >~ :r : , /  - 6  

and 

: r  1 ..... Sk):/> -6 [ 1+ ~" ( I - s , , , ) ]  > ~ - 6 ( k + l )  

Thus 

eCr.jk ~< e(62/8)lk + I )+(62/4)(T--j,~.) 

where we used the positivity of (:~b3:) 2. 

(51) 

4.2. The Basic Lemmas 

We first prove a simple lemma for Gaussian variables r of mean 0 
and covariance C such that 

C(s, t)=C(t,s) <~ a 
( l + f l l s - t l )  '+= 

We denote by ( .  > the expectation with respect to this measure. 

Lemma 1. Let Pi(x), j = l  ..... 1l, be n polynomials and let 
si ~ ]l(i) - 1, l(i)], l(i) being positive integers. Moreover, suppose 
/(1) < .. .  <l(n),  that is, the s; belong to nonoverlapping unit intervals; 
then there exists a constant K such that 

( fl  Pi(r I < (NN!'nK)" 
I 

(52) 

with N=supjd~ where d~ is the degree of Pj. The constant K 
depends on a, fl, e, and a =supij [ao.[, the a u being the coefficients of the 
polynomial Pj(x). 

Proof. We give the proof for monomials; thus Pj(x)=x"J and 
N = supj nj. 
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Since the measure is Gaussian, the expression is different from 0 only 
if Zi  ni is even, i.e., 2L = ~ j  nj. In this case 

1 

where the sum runs over all distinct partitions of {s~ ..... sl ,  s= ..... s_, ..... 
s ....... s,,}, sj appearing nj times, into L pairs, and dz is the product of the 
L covariances whose endpoints are the two elements of each pair (in field 
theory language, this is nothing else than the Wick theorem, which says 
that the Gaussian integration of a product of fields is the sum over all 
possible products of expectations of pairs of fields). 

To get our result we use the method of combinatorial factors, i.e., we 
introduce, for all L strictly positive numbers c, and apply the bound 

d~<<'(y"ctl)supctdz- t . i (53) 

Obviously, to be interesting, this bound requires that the combinatorial 
factors ci have something to do with the behavior of d I with respect to the 
partition. This point will be illustrated in the sequel. Clearly this formula 
applies also in the case the partitions run over denumerable sets, provided 

c s  1 < ~ ( 5 4 )  
1 

The following remark, which is part of the power of the method, will be 
used extensively: 

If the sum over the indices I can be rearranged in terms of two sums 
over sets of indices 11 and 12, I = I ,  w I  2 (for example, corresponding to 
conditional labeling), so that 

then the combinatorial factor c~ related to the sum over I can be written 
as a product of combinatorial factors ci = c~, c~ related to each of the sums. 

Since ~'., c s  oo and the estimate of the r.h.s, of (53) is independent 
of the scale of c,, we can replace c~ by c~ ~ i  c]~ and decide from now on 
that the combinatorial factors are such that 

~ c;-' <~ l 
I 
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We now explain how, in the case of the lemma, one can define the 
combinatorial factors cl. We will do it in a constructive way. 

A way to understand the rules of Gaussian calculus is by doing 
integration by part with respect to the Gaussian measure: 

( qb.,F(c~) ) = e | C(s, t)/~SF((~)\ dt 
d \6~,  / (55) 

where F is some polynomial functional of the variables ~b,,. In this formula 
two variables ~. and ~b, have been replaced by a covariance C(s, t). Thus 
what remains is F with one variable ~b, less, a fact which is mathematically 
described by the functional derivative of F with respect to ~b,. We will say 
that ~bs has contracted to ~b, or equivalently that ~, has contracted to ~b, 
since the covariance is a symmetrical function of the endpoints. Remark 
that when F is a polynomial, repeated applications of formula (55) lead to 
a computation of the expectation value in term of products of covariances. 
This is the method we will use now to give a bound on the left-hand side 
of formula (52). 

The contraction process, i.e., picking a variable, then associating to it 
any other variable and replacing these two variables by their covariance, 
repeated up to the complete exhaustion of variables, is an explicit way of 
describing the result. Obviously the result is independent of the choice of 
the initial variables. This means that one can choose the order in which to 
pick the first variable in each pair of contracted variables. This order will 
be the order of increasing times and we will start from one of the n~ 
variables localized at s~; then when all the n~ variables have been con- 
tracted, we choose one of the n_, variables, which now can only contract to 
variables localized at a) with j/> 2, and so on. Therefore with this choice of 
rule for performing the contractions, a set I is described inductively as 
follows (Fig. 1): given one of the variables q~.,, s l e ] l ( 1 ) - l ,  1(1)], set 
i~ = l(1) and choose the time interval [ j ~ -  1, j~ ] in which the variable lies 
which will be contracted with ~b.,.,. Since j , />  i,, j j  = l(r(1)) for some integer 
1 <~ r(1)~< 1l; then choose which one of the n~l~l variables q~.r,,, will be con- 
tracted [if  r( 1 ) = 1, there remain only n~ - 1 variables to be chosen]. This 
will be the first, contraction. Take then another variable localized in ]i_, - 1, 
i2] [iz=/(2) either if nl = 1 or if nl = 2  and r ( 1 ) =  1; i2=/(1)  otherwise] 
and repeat the procedure; if there are no more variables in ] / ( 1 ) -  1,/(1 )], 
then take a variable in ] / ( 2 ) -  1, /(2)] and do as before ..... Generically, if 
the initial variable is in ]i, , ,-  1, i,,], it can contract to any variable in one 
of the intervals ] / ( p ) - 1 ,  /(p)]  ..... ] / ( n ) - 1 ,  /(n)], with p such that 
l(p) >~i .... and once the interval has been chosen, say l(r(m)), p ~< r(m)~<n, 
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(~s ~s l~S 1 
, I 

... 0 $  l[I)S Z . . . .  r  i ""(~S i . . . .  r  i . . . . . . . . . . .  "~Sj . . . . .  0 S j  . . . 0$ j  . . . . . . . . . .  r 1 6 2  

Fig. 1. The contraction procedure. 

there are at most  q~.,,,,~ variables to choose. This means that  fixing a set I 
is equivalent to choosing j , ,  J l /> i, ,  then J2, J2 >~ i2 ..... where 

{1(1),..., 1(1), I(2),...,/(2) ..... l(n) ..... /(n)} = {i, ..... it_} vo {j ,  ..... jz.} 

i.e., fixing the pairings of  the unit time intervals linked by contract ion and 
then choosing in each contract ion process which variable in a given unit 
time interval is effectively contracted.  We call 1, the set of  all pairings 
{ ( i , , J , )  ..... (i,.,Jt.)}. Then I1 being fixed, we have to sum over all possible 
choices of  variables in ] r ( 1 ) - 1 ,  r (1) ]  ..... ] r ( L ) - 1 ,  r (L ) ] .  We call 12 the 
sets of indices labeling these choices. 

Thus 

(0 5 ( ) r = d,= y. ~ C(s,,,,, s t , , , ) " "  C(S.,L,.S~IL,) 
11 12 

(56) 

where 

. . . . .  . . . . .  . . . . .  s , , }  

and s~,k, e ]i  k - 1, ik], s~,k, ~ ]Jk - 1,jk] for k = 1 ..... L. 
It results that  the combinator ia l  factor for the sum over  I is given by 

the product  of  two combinator ia l  factors, one is ct, and is related to fixing 
the time intervals, say X~I,,,~, J,, = l(r(m)), in which lies the ruth contracted 
variable, m = 1 ..... L, and the other  one is c~ and is related to which one of 
the n~,,,,~ variables will be contracted.  

We choose 

c,, = K , ( e )  L H(1 + Ij,,,-i,,,I)' +~ 
tit 

where K,(e) is such that  

H(l+[J,, ,- i , , , , )  -''+~'= f i  ( ~ ( l + ' j m - - i , , , , ) - " + ~ l ) ~ K , ( e )  L 
11 m n l  = l . '~  ~ i >- t m  
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Moreover .  cz_. = N L, since, I~ being fixed. 

Thus  we can take 

Now,  since 

L 

~. 1 <~ 1-I n~o,,~ <<- NL 
12 m ~ 1 

cz=K, (e )  t NL I-[ (1 + I j . , - i , , , I )  T M  

ll7 

l + f l  "~'+~ 
C(S~ck~' S*~kO <~ O~ l + fl iJk-- iklJ 

(H, ) q~',~'. = ~ di<~ sup cltcizdI 
1 11,12 

(l + lj , , ,- i , , ,I)  T M  

~< (NctK,)L sup l,,lrr (1 +fl  I j , , , - i . , I )  T M  

<~ (NooK I K2) c 

(57) 

(58) 

where Kl = K t(e) ( 1 + fl) 1 + ~ and K 2 = max(2, f l -  l ) 1 + ~, since 

1 + [ j , , , -  i,,,I 

l +fl  lj,,,-i,,,I 
~< max(2, f1-1) 

Thus, since 2L ~< nN, one gets the result for monomials  

(0 / .,~ <~(N!I/2K) '' (59) 

with K =  (~.K l K2) u/2. F r o m  this bound,  if the monomials  are replaced by 
polynomials,  the inequality of the lemma follows easily by considering that 
the number  of monomials  in each Pj is bounded  by N +  1. 

We will use intensively in the sequel a s traightforward extension of  the 
above bound.  The bound  is still true if one replaces everywhere 

nk ~ (n~.) _ _  
~b.,.~. ~ v/Ikl = I-I ~bsk~ (60) 

I "=1  

with Sk, �9 ] l (k)  -- 1, l (k)] ,  for k = 1 ..... 



1128 Jona-Lasinio and S~n~or 

Remark.  The bound of the lemma shows the characteristic N! ~/2 
behavior expected from the contractions of N variables located in the same 
time interval. 

We now prove another lemma, which makes the dependence of the 
bound on the local number of variables more precise. Under  the same 
conditions as in Lemma 1, one has the following. 

Lemma 2. The following condition holds: 

I fiq~.'~r (nJ!) v'-K" (61) 
I j 

Proof  The proof  is identical as the proof  of Lemma 1 except for the 
combinatorial  factors associated with the choice of variables at a given site. 

We order the variables decreasingly according to nj. Thus, let j( 1 ) ..... j (n) 
be a reordering of the first n integers such that njl~>nj~z~... >~njc,, ~. 
Then we start the contractions with the variables labeled j(1 ), then with the 
variables labeled j(2) ..... A variable ~bj~j can contract to another variable 
q~j~,,.. Since the number  of such variables is at most nj~,,~, one can take 
n,,, as combinatorial  factor. Now because of the ordering, we can use 
lljlm} ~ (17j(l))1/2 (],ljlm))l/2 to replace the initial combinatorial  factor by a 
more symmetrical one: the square root of the product of the number of 
contracting variables by the number  of contracted variables of the required 
type. Repeating this analysis for the other contractions, we get as a com- 
binatorial factor, instead of N N/2, I-~jllj I"t/2. Then, using the fact that 
pt'/~-<<. CPp! v'-, one gets the announced bound with some new K inde- 
pendent of the number of variables. 

This type of lemma can be found, for example, in ref. 10, Chapter  2, w 
We have given an independent proof  to make the paper as self-contained 
as possible. 

4.3. Bound of a Generic Term of the Expansion 

A generic term of the expansion is of the form IkDk_~. . .D~E~o,  
which is in turn a sum of terms. Since the expectation i linear in F, one has, 
prior to any expansion, at most d ~  1 contributions corresponding to the 
different monomials  appearing in F. The other sums, those generated by 
the expansion, are either related to the choice of the time localizations of 
the D's, i.e., of a sequence of supports indexed by j~ > ..- > J k -  ,, or to the 
choice to be made among identical objects. 

Let us first treat this last case. Since D = A + B, there are 2 k -  J distinct 
ways to write an ordered sequence of k -  1 products of A or B. This num- 
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ber is the combina tor ia l  factor. The  A terms are made  of derivatives. Each 
derivative can act either on the exponent  or  on already produced  terms, 
i.e., it gives rise to two sets of  terms. This gives a combina tor ia l  factor 2 per 
derivative. Since the terms to derive, new ones or  a l ready derived ones, are 
local po lynomia ls  of  degree at mos t  p '  = d~ if F is differentiated or p = 6 
for the o ther  case, we have, per functional derivative, a cor responding com-  
binator ia l  factor  p '  or p x p = p-'. In the latter case one p is to choose which 
m o n o m i a l  is derived and the other  one to choose which variable is derived 
(the m o n o m i a l s  are at most  of  degree p). This  gives, per step, i.e., two 
derivatives, a final combina tor ia l  factor KI = (2p-')-' except if it is F which 
is hit by one of  the derivatives, in which case one has to replace K, by 
K'~ =4p'p'-. We then have to est imate sums over  the t ime localizations of  
products  of  monomia ls .  

The sum over  t ime localizations is a relevant quest ion only for the A 
terms, since the B terms generate  localized variables.  Fo r  an A te rm one is 
led, say, as the m t h  step, to derive variables at a t ime u,,, contained in a 
known time interval [ J , , , - l ,  T ] ,  the suppor t  at the ( m - 1 ) t h  step, and 
variables  at a t ime v,,, conta ined in its comp lemen ta ry  set in [0, T ] .  To  
define inductively the steps of  the expansion,  it is necessary to fix the unit 
t ime interval in which [j,,,,j,,, + 1 ] is localized v .... the A term being writ ten 
as a sum over  j,,, such that  0 ~ j , ,  < j  . . . .  i. The  new suppor t  at  step m is 
then defined as [Jm, T ]  (Fig. 2). TO make  the bounds  on the var ious terms 
of the expansion easier, it will also be convenient  to restrict the integrat ion 
of  the t ime u,,, to unit t ime intervals [ i  .... i, , ,+ 1 ], with i,, >~j,,_l. This 
means  that  each A term is now the sum of expressions labeled by pairs of  
numbers  { ( i l , J l )  ..... (i,,,j,,),...} where il>fj,,>jl+t > 0 ,  l =  1 ..... k -  1, and 
il = T - 1 .  We will have to sum over  all al lowed values of  these pairs of  
variables,  a task that  will be done easily because, by the way the expansion 
is defined, there are decreasing p ropaga to r s  connect ing the unit t ime inter- 
vals defined by each pair  of  variables. 

R e m a r k  that  if at the m t h  step a B te rm is chosen, then there is no 
s u m m a t i o n  over  i,,, and j,,, = j  . . . .  i - 1. 

An expression like IkDk-1"" "DIE2u can be written, with an obvious  
general izat ion of  the no ta t ion  int roduced in Section 3.3, 

I.,,Dk-,'"D,E~o= ~".'" ~ IkD~,-,(ik-l,Jk-,)'"D,(i,,jt)Eo r 
i l  , J l  i k  - I , j k -  I 

Each time/~,, ,  is an A term, it contr ibutes  to the r.h.s, of  the above  equali ty 
a covar iance C(u .... v,,) t imes a po lynomia l  in ~b,,,,, and a po lynomia l  in ~b~,,,,, 
which are functional derivatives of  ( r  or  F or  of  their derivatives; each time 
/5,,, is a B term, it contr ibutes  by :~b4 _,:. 
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Each element of the r.h.s, of the above equality can be written as the 
expectation of e eT times the product of polynomials of q~,,,, and q~,,,. 
(monomials from functional derivatives of ~r  or F) for u,,, ~ [i,,,, i,,, + 1 ] 
and v,,,~ [j,,,,j,,, + l ], 1 ~<m ~<k-  1, times the product of covariances 
C(u .... v,,,) or B terms. 

Thus 

] ' k L ) k  - l (  i k - -  I , J k - -  I ) " " " /)1 (/'1 , J l )  E T  4'o 

<~ CF(Kj K2) Ck - ~ sup [Iipl(i I ,Jr ..... i k -J ,Jk  - i )[ 
IPI 

where 

Cr  = ( d ~  1 )(K'l )d~r K" 

K~, the supremum of the coefficients of F, while K2 is the supremum of the 
coefficients of ~r. Now, I le l ( i  l , j l  ..... ik_ t , J k - l )  is generically of the form 

I le l( i l  ,Jl ..... ik_ I , J k - I )  

= f d p c e  :r { ; f  []  P,.(~b., r) ~ 6 ( . ) H  C(u .... v,,,) Zj,,,+,(u,,,, 
Y I t !  

x Zi,,+ i(v,,,) du,,, dv,,,t (62) 

where: 

�9 P,. are some monomials obtained from functional derivatives of F 
or ~ (one of the P is a monomial from F or from its functional derivatives) 
whose arguments are variables xr localized at elements of Jk-~ = 
{ul ,  vl ..... Uk_l,  Vk- i } ,  i.e., x, E J k - 1 .  
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�9 The d-functions have arguments which identify two variables of Jk- ! 
(this arises from multiple functional derivatives acting on the same local 
monomial  of  the variable, i.e., u,,, can be identical with v ,,,_ ,, u , , _  1 ..... v ~ , u,  ). 

�9 The product over covariances runs over all the values of m corre- 
sponding to the choice of a A term. 

This means that the time integrations in (62) can be reduced using the 
delta functions to a subset of distinct u and v variables (the B term being 
omitted since does not carry integrations). Moreover,  since at the end we 
will apply Lemma 1, we can regroup all monomials  (of degree less than 6, 
since ~ is at most of degree 6, except for one of them related to F)  whose 
variables are localized in the same unit time interval. 

Since some of the integration intervals may coincide, we rewrite (62) 
a s  

f d l ' c  "'" 1-I C ( u  .... v,,,) I~  R ,  d x ,  dx2.--  e cr 
m I = J k -  1 + 1 

where R~ is the product of all the monomials  P,, such that the times x,, are 
localized in ] l - I ,  l ] .  We set d ~  Since there are at most 2 ( k - 1 )  
functional derivatives and since the polynomials in ~ r  are at most of degree 
6, one has the bound 

~. lh ~< 10(k - 1 ) + d ~  10k + d ~  
/ 

the last term of the r.h.s, resulting from the fact that one of the P 
monomials  comes from F or its functional derivatives. 

One then applies the Schwarz lemma with respect to the Ornstein-  
Uhlenbeck measure to separate I-[ R/ from the exponential. The term 
containing the exponential will be estimated using the Wick bound; the 
other term is then no more than a Gaussian expectation of a product of 
monomials  of variables ~b,. To stick more to the usual Gaussian calculus, 
let us write them 

q~.,. = ~boe-'~/2 + ~.,. (63) 

where ~.,. is a Gaussian variable of mean 0 and covariance C(s,  t). 
To simplify our further discussion, we will do the estimate as if all 

variables, say in R l, are localized at the same time sl, l - -  1 ~< s/~< l. There- 
fore we are led to estimate expressions like 
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with the above conventions. Then, using (63) and Lemma 2, we have 

(I H (',)})"' I =  d~lc ~ ~.o ~ ~.~., 
- p t  P l  

<~2'r"'"'(,,.qSUpq,_... I~It ~g'e-"/2's'qtl d, tcI-Jt ~ [ )  '/2 

~ (2K) (:c ')  (64) , sup I-I dcqie-(t/2)'q'I-~ (p,!)l/2 
P l  , "ll , P -  , q 2  . . . .  I I 

where the supremum is taken over all positive integers p~, q~,p2 .... such 
that P / +  q /=  217/, l = 1,..., and the last bound results from the application of 
Lemma 2 using the fact that for any e > 0 (we can choose here e = 1 ) 

1 
C(s, t) <.N e-I. ,-  ,I/z <~ C(e) 

( l + l l s - t l )  T M  

for some C(e) > O. 
A special role will be played by the covariances explicitly appearing in 

formula (62). We factorize each of these propagators into four parts 

C(s, t) = C(s - l) = K(s -/)4 (65) 

Obviously K(s - t) <~ e-Is-,I/8 
We will use these four parts to get rid of the factorials, to control the 

Wick bound, to sum over all localization choices, and finally to exhibit an 
overall exponential decrease in the length of the support of the expansion 
term. 

We first show how to get rid of the factorials produced by an 
accumulation of functional derivatives in a given unit time interval. In such 
a time interval, the accumulation of variables can arise from repeated 
derivation of the exponential. This occurs each t ime /3  is an A term, that 
is, when the measure is derived and one of the functional derivatives acts 
on the exponential. But then by construction the other functional 
derivative is localized further and further from the given time interval, since 
each time there is a new step the support moves at least one step to the left. 
We then use the decrease of the covariance linking two localizations to 
control the factorials. More precisely, if there are n; variables in the time 
interval [ i -  1, i]  and n i is a large number, this means one can associate to 
this time interval a fraction of the decrease of the covariances obtained by 
derivation of the measure 

I-I c ( u ~ - v p )  
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where 

I i= {~, f l l  u~,e [ i -  1, i], vp~ [0, i --  1]} 

Since each derivative acting on the exponential can produce at most 
monomials of degree 5 and since there can be, by construction, only one 
time v in each unit time interval, the smallest value that can take 
sup~.p~z, l ug -vp l  is bigger than [ n ~ / 5 ] -  1. Thus, using (65), provided 1l+ is 
large enough, we have 

( 
( ,l,-" 

~<K 3 exp - 1000/ (66) 

with K3 independent of n~. 
We will use this estimate for two tasks. One, as announced, is to get 

rid of the factorials and the second is to get rid of the dependence with 
respect to the initial condition ~b0. 

To get rid of the factorials we use the fact that for any q > 0, there 
exists K4 = Ka(q) such that 

(n i ] )q e -''~ /2~176176 <~ K'~' (67) 

One thus sees that in the bound of Ilel(i  I, Jl ..... i~_~,jk_~), the local 
factorials can be replaced by powers. 

We want to control the ~b 0 dependence in the bound (64). 
If ~b o ~< 1, then there is no dependence. Suppose therefore that ~b o >1 

and set T=log~b o. Then, for 1> T, ~0e-S~/z< 1. Thus the only contribu- 
tions to estimate are those coming from l < T. Using the fact that qt <~ nt, 
we will take account of half of the bound (66) and estimate 

I-I ~ qte-ll/2)stqte-(q~/2000) (68)  
/~<T 

Let us fix Zt<,~q~= Q and compute the maximum of this expression. It is 
reached for 

q l=5OO~-~+O--500S!  

822/83/5-6-22 
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where A = Z ~ < T  1 is the sum over the l such that qzr and 1 ~<A ~< T i f a t  
least one q~4:0. It is then easy to show that (68) is bounded by an expres- 
sion of the form 

e "  + b ( ' 2 - ' ' Q 2  ~< e a + Ib-'/4'') = K(T)  

a, b, and c are T dependent 3 and c =  1/ (20003)>0.  Thus the contribution 
due to ~bo can be bounded uniformly, for all terms of the expansion, by 
K(T)  = Ks(q~o). 

Therefore 

k 

[-[ K(u .... v.,) 2 I <~K~Ks(2KK4) r' '<~KTKk6 
m = [ 

with K 6 =  (2KK4) I~ and K 7 =KsK~(2KK4) a~ 
We now show how to get an exponential decrease in the length of the 

support of I. It is easy to show, using the fact that for u te  ]i~, i~+ 1] and 
vie [Jl,Jl+ 1], 

[ul-vl[ >l i l--j l--  1 

that 

k - I  
e_lut_vtl/8<~e_(i/8)(T_h+,..+ik_l)(]( k l)/8<~e--(T--j~.-i)/8elk--l}/8 

/=1 

We will use this result twice, first to control the Wick bound and second 
to make explicit an overall exponential decrease in the support. 

Moreover, since either in an A or in a B term there is at least one 
functional derivative acting on the exponential, at least one new coupling 
constant /l can be explicitly factorized. 

We will now show how, using one-quarter of each propagator ,  we can 
sum over all the possible time localizations. 

The derivative with respect to s~ at the lth step gives rise to two sums 
over time localizations. One is related to the choice of a unit time interval 
[i/, i /+  1], containing u l, in the set ] J / -~ ,  T] ,  and the other to the choice 
of a unit time interval [Jr,J1+ 1], containing v/, in [0 , j /_  1]. Since by con- 
struction j~_ ~ is between u~ and v~ 

lu~-v~l = [ u l - j l _ ,  I+ l J / - , -v , I  ~< l i l - j l - ,  l+  [J/- ,-J/ I  

3 Since Y" s I and Y~ s~ are functions of  T. 
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Thus 

K( v l -  ul) <~ K(jz_  i - Jl) K( i l -  J l -  l) 

and we can use the fact that 

K(n) <~K8 
n ~ O  

for some constant Ks, to sum over the localizations of u / a n d  of v~, with 
j~_ ~ being fixed. 

Therefore to perform the sums we start, using the above procedure, 
from the end, doing first the sums over the localizations of the derivatives 
with respect to Sk_ ~, then from the sums resulting from Sk-2,  and so on, 
up to s~. 

We finally end up, for k >t 2, with 

IkDk-- i " "DiE , to  

< ~ 2 k - ' C F K T K ~ K { - ' K ~ - '  ~, . . .  y ,  1 - IK(u , , , v , , )  
il  , J l  i/,- _ I ,J~." - I n t  

)< e - I T - - j k _  I I/Se(k - 1 ) /Be (  6 2 / 8  ) (k  + ( ) + ( 6 ) . / 4 ) (  T - -  Jk - I } 

<~ ) k - -  I C F K 7  K ~  - I R ' k  6 " "  I - t Kk'_ - J 

x e ( k  - i } / 8 e l  6 2 / 8  ) (k  + 1 ) s u p  e - I T - j k -  I I / S e t  6 2 / 4 ) (  T - - j k  - t ) 

J k - I  

<-~Kp k - (  (69) 

if 122 < 1, It = }~K t K z K 6 K s e  3)'/2 and K =  CFK6K7 e3~'/2. 
Remark that only K 7 is 430 dependent. Therefore the constraint on the 

smallness of 2 does not depend on 430. 
We can obviously extend this bound to include the case k = 1, with K 

now such that II~ E ~  I < K. 
Thus we have proved that provided that it < 1, i.e., 2 is small enough, 

2 < 2 0 ,  

K 
[Er eCql < 1 - I t  (70} 

with K =  K(~bo) finite for 430 finite. 

5. PROOF OF T H E O R E M  1 

The expansion defined in the previous section and the bound (70) 
prove the first assertion of Theorem 1. We will now show that from this we 
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obtain the existence in a weak sense of an invariant measure and that this 
measure is insensitive to the initial conditions. 

5.1. Existence of the  Limit  as a C o n v e r g e n t  Expansion 

To prove the second assertion of Theorem 1, we will show that IT= 
E,o(F(~br) e ~) satisfies the Cauchy criterion, i.e., that for any given e > 0, 
there exists N such that for T, T' /> N, 

I I r - I r ,  I <~e 

Thus let us suppose that T >  T'. We then perform the expansions for both 
1v and 1r, and compare each term of 1r with the corresponding term, if it 
exists, of It , .  

Let us look in detail at the first terms. Explicitly 

E,o(F(~br) e Cr.r-') = f dr F(~br) 

xexp - 4  r - ,  :C: ds_;~8J "T 
T - - I  

( ~ )2 )~ :~b~:) :r ds--~ 
(71) 

where the integration is over the Gaussian variable ~.,. (see eq. (63)) of 
mean 0 and covariance C. Let us now set s = T -  1 + u, then 

e -"'/2)'~ - d~ r) (72) ~.r WIT--  I) ~ r t t  

with ~bl,, r~= ~ r - 1 + ,  and ~b~r_ ,~ = e-I  T--l)/2~bo. The interest of this change 
of variables comes from the fact that the covariance of ~,,, 

IT)  ( T )  E(~,, ok,, ) = C ( T - -  I + u, T -  l + v ) = e  -I ..... I / 2 (1 - e - l r - l ) e - l n f " " " )  

converges to the translation-invariant equilibrium Gaussian covariance 
when T---, + ~ .  

Since in formula (71) all variables depend on times between T and 
T -  1, u is restricted to the interval [0, 1 ]. In particular, the exponent can 
be rewritten as 

2 f~ ir~ 4. ~(~blr_,)) = - ~ :(e-"/2(bir_,l+~,,, ) . d u  

8 (:(e -"/2~bir- 11 + T,,I]/CTI~3")2... du 

2 
- -  -~ : (e - - I / 2 (p IT - -1 )  + I ] / IT ) )  4: (73) 
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Thus the T dependence of Ec~o(F(fb r) e r appears through the initial 
value of the variable ~b~r_ 1) and the propagator. We can therefore write the 
difference 

E,0(F(~br) e x p ( ~ r . r _ , ) ) -  E~0(F(~br,) exp(~r, r ,_ 1 ) )= l l (Z ,  T') 

using the fondamental formula of calculus, as the integral of the derivative 
of an interpolating formula obtained by replacing the initial condition by 

~b(r) = (e -I r -  l)/'-r + e - I t ' -  IV'-(1 - r)) ~b o (74) 

and the covariance C by 

C~(u, v) = e-I  . . . . .  I/2(1 - ( e - I t -  llr + e - IT ' - l ) (1  _ r)) e -  Infl,,,v)) 

Defining 

I~.~,(r) = f d~,o~ F / e -  %b(r) + ~,, ) e r (75) 

one has 

;• d (I) 
Ij(T, T ' )=  ~rlT,  T,(r) dr (76) 

The derivative d/dr acts on ~b(r), i.e., on functions of ~b, F, or the exponent 
and on the measure. The result is a sum of two terms: the product of a 
derivative of ~b(r) times the expectation value of some polynomial of ~b and 
the derivative of the measure, 

f dflCr If (e-IT'-11 _e -Or - t ! )  e- i  ..... I/2 

a 6 
x ~ ~ , .  F(e -,/2~(r) + ~, ) e r du dv 

Setting as before log ~b o = T and supposing that T and T' are large 
enough such that 

inf( T, T')  > 16T (77) 

let us look at the first contribution. Since 

d 
~rr ~b(r) = e-l/2~bo(e-7"/2 _ e-T'/'-) 
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I~o(e - r/2 - e -  r'/2) I <~ e --(7/16)inf(T.T') 

d~b(r) ~< e-l/2e--(7/16)inflT'T') 
dr 

from which it follows that the first contribution is bounded by 

d IITI)T,(7~) ~e_,7/4) inf lT,  T, , f~(d~lr,e((fi(~.))d~Ucr 

where the polynomial P(q~(r)) is given by 

e(q~(r) ) = e -ll2F'(e -1f2r + I~1 ) 

+F(e-~/2~(r )+~, l ) )  --2 e -''/-" :(e-"/ '-~(r)+G,)3: du 

322 ~] 
4 e-"/2 :(e-"/z~b(r) + •,,)s: :(e-,,/2q~(r) + O,,)z: du 

- ~  e -  1/-, :(e- J/-'q~(r) + 01 )s: 

We can estimate this last term using the result of the previous section. The 
dependence with respect to the initial condition of this estimate can be 
removed by using the fact that, from condition (77), 

I~b(r)l ~< 1 

Similarly, the second contribution is bounded by le - ( r ' -  ~ -  e - ~ r -  ~11 
times some uniformly bounded in T and T' expectation (according to the 
first assertion of Theorem 1 ), i.e., a constant times 

e - (7 /4) ln f (T ,T ' )  

This shows that 

and that 

lim Ii( T, T') = 0 
lnf{ T, T ' I  ~ +c~c, 

lim E,o(F(d~r)  e Cr.r-') = f dl tG, F ( ~ I )  e r 
T ~  + or~ 
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where ~b,, is a Gaussian variable of mean 0 and covariance the translation- 
invariant equilibrium Gaussian covariance. 

Let us suppose now that T>~ T'. To deal with a generic term, we 
follow the analysis done for the first term. Let us suppose first that at the 
kth step of the expansion one has a term with support T-- jk_ ~ for I r with 
Jk-I >1 T-- T' and T ' - J ~ - - t  for I~- such that T ' - J ~ - l  = T--Jk- l .  Then, 
it is easy to convince oneself that these terms can be written as sums of 
elementary localized products of monomials corresponding to the same 
action of the derivatives and localized in unprimed and primed indices 
whose difference for the same labeling is T - T ' .  To compare these same 
elementary terms we perform a change of variable by setting s = Jk-~ + u 
and s' = j ~ _  1+ u in, respectively, the unprimed and the primed expression. 
The difference between these two expressions is then related to the dif- 
ference between the initial conditions. An interpolating initial condition is 
given by 

~b(r) = (e -jk-'  - e-J~- ')  q~0 r + e-J~-'~b o 

We have formulas identical to (75) and (76). The derivative with respect to 
produces two effects: first, an overall factor corresponding to the 

derivative of ~b(r) which is bounded by 

@ r r ) ~  I~o(e -ik-' - e-J~-,)l (78) 

and second, contributions to the functional derivative from the chain rule 

d d~(r) 

Obviously, one has for these terms, before we perform the sums over the 
localization indices (i~,j~ .... ), the same bounds as given in Section4.3. 
Combining the overall decrease in the support, which was not used in the 
proof  of the uniform estimate, with (78), one gets 

e--IT--J~'-'l/8. ~ ~ K9 I 01 e-  r'/S= Kg(l~bol e--inf(T'T')/16) e --inf~ T, T')/16 

<~ K9 e -inr~ r, T'I/16 

In the case Jk-  ~ < T -  T', the difference reduces to the terms in the expan- 
sion of IT. But these terms, by the nature of the expansion, get a decrease 
in e - ( r - . j ~ . _  ~ ) / 8  < e - r'/8. 
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Thus, collecting all results, we obtain for the difference an overall 
uniform bound in 

e --inR T, T')/16 

Finally, this shows that there exists a constant K, 0 independent of 2, 
2 < 2o, and ~bo such that 

]Ir- -  Ir ,  ] <~ K,o e-["f~ r'r')/16 

provided (77) is satisfied. This is the announced bound with 
= K l 0 e  - In f [  7", T')/16 

5.2. Insensit ivity to the Initial Condit ion 

The third part of the theorem is proven in the same way by showing 
that 

d 
lim (F(~b r) e Cr) = 0 

T ~  4-:':. ~ 0  

The insensitivity to the initial conditions then follows if we can interchange 
the limit with the derivative. It is trivial to see that this is possible for ~b o 
in a compact. 

Performing the derivative, we obtain 

d 

dr 
- -  E r F( r T) e r = e - r/2 E r F'(  q~ T) er 

+ Er (F((OT)) 
dg~ e ~, rx~ 

\ 
(79) 

We can apply the expansion for the expectation in the first term. This 
shows that 

lim Ec, o(F'(OT) e Cr) 

is bounded uniformly in T. Thus, because of the exponential factor, the first 
term of the r.h.s, of (79) vanishes as T ~  + 0o. 

We now look at the second term. We will then perform the expansion 
of Section 4 on this expression, but introducing the dependence with 
respect to the interpolating parameters also in the derived ~v: 
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E~o (F(~r) dd@o eCr) (sl) 

( ( f :  =E,o F(fbr) -2 e-'/2:rk3:ds 

32-" ~: , 2 
- 4 e-.,-/z :q~3. :~2.: ds-g e-r~'- :~ b3: 

- 

Thus 
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but 

E,o F('~bv) e Cr =E~o(F(~T) e "r ' ' - ' )  E,o \ d--~o eCr-' 

/d~r-l Cr-,) d d E~ot-~o e = ~ o E * o ( e C r - ' ) = ~ o l : O  

d~ T -  1 e~ T 

We claim that the first term of the r.h.s, of (80) is exponentially small and 
that the second one vanishes. 

Because of the support properties, we have 

i ,E,o(F(~br)~eCr ) " d~TT e~rr 

and it is easy to see that, performing the change of variables (72), this 
expression is bounded by, because of the factor e -s/'- or e -r/-" in the 
derivative of ~, 

I,E,o ( F(~r)~d~r'r-' eCr'r-')<~K'l e-~r-"/2 <K,, 

with K~I independent of T. 
The second term factorizes as 
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There remains a D~ term to which we apply the next step of the 
expansion. We consider the A term. Thus 

/ d~reCr ) A,E,o (F(~b r) ~ o  

= ~, AI(jj + 1)= dltc~.,.,~ C(ul, [I)Xj,+I(Ul)ZT(OI) 
Jl = 0 Jl = 0 

d d / d~r(sl) Cr,.,',,'~ 
x dq~,,~ 6q~,.~ [xF( q~ r) -~-o  e j du , dv , ds , (81) 

in Section4 in ~T(SI) and in We introduce the s2 dependence as 
dG-(s~)/d4)o. 

Then its contribution to 

d~ T e~l. ) I2Dj E,~o (F(~b r) ~ o  

is given by 

I,_A l(J* + 1 ) 

'f f =Io d#c~.,-,~ C(tq, Vl)Xj,(u,)zr(vl) 

6 6 ( d~r(s,,s2) ) 
x6(~,,'--~j3~,.~ f(q~r) dq~o e Cr''''''" duldv, ds,].,..=o 

=I21 a"~'.",' f c(.,.v,)zj,(.,)z~(v,) 
, 6 ( a,T./s,.o) ) 

X6q~,,-~gq~,. ~ F(~r) d~bo eCT.,, ''''~ du, dv, ds, 

' '  } 
x 6qb,,-~ d(~,,~ (F(~T) eCT'") du, dr, 

• { ;  d,,~,...,, I c(,,,. ~,) xj,(.,) z.,~,) 

) } x - - - -  eCJ, d u l d v  I ds I 
dq~ ,,, 6ok,,, \ d$o 
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The first term on the r.h.s, can be estimated by the method of Section 4. 
Taking account of the extra exponential factor due to the derivative with 
respect to 4)o, we get a bound of the form (for suitable K and/t)  

K i t e  - j~ /Z e - c T - j ,  )/8 ~ K i t e  - T/8 e - 3j, /8 

We thus get an extra factor e-T/s. There is a similar bound for the B term. 
The second term is identically 0 since the second factor in the product 

is a derivative of the identity. 
These results can be extended for a general term of the kth order 

showing that 

E+o (FIOT) dr 
J 

is bounded by a convergent sum times e-r/8. Thus when T---, co this con- 
tribution vanishes. This ends the proof of the theorem. 

6. PROOF OF T H E O R E M  2 

6.1. Existence of the Measure  

The existence of the l imit 

lim E,h,,(F~(ckr+,~ ) . . .  F,,(~b r+,, ,) e Cr+') 
T ~ , ~  

is proved in the same way one prove the existence of the limit for a single- 
time expectation. Remark that this limit, if it exists, is the same as 

lim E+0(FI((bT,_~+,,)...F,,(~bT,~,+,,,) e r  . . . . .  ) 
T '  ~ ,zc 

for any finite ~. This show that the limit of the expectation of correlation 
functions is translation invariant. 

The proof follows essentially the steps developed in Sections 4 and 5.1., 
except that the initial interval is no longer [ T -  1, T] ,  but [ T, T +  t],  i.e., 
we first write the initial expression as a uniformly in T convergent expan- 
sion and then show the existence of the limit by a three-e argument. 

The existence of the limiting measure can be proved by different 
methods. One possible method is to show that for any function in L 2 with 
support in [0, t] ,  for some t > 0, there exists the characteristic function 
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6.2, Exponent ia l  C lus ter ing  

The exponential clustering follows also from the same analysis. We 
will prove this result for the expectation of two variables. Let us consider, 
with t~ >/t~_+ 1, 

I ( t l ,  t2)= lim E,ho(Fl((kr+,~) F2(q~r+,,_)e CT+'I ) 
T ~ ,z:.  

- [ lim E~o(F~(q~r+,,) eer+'~)][ lim E,bo(F2(qbr+,, .) eCr+")] 

(82) 

We rewrite this expression as 

I ( t l ,  tz) = lim {E~.(Ft(~bT+,.) F2(~T+,_,) e Cr+',) 
T ~  

-E,~~ eCr+")[ lim E~,,(F2(ckr,+,,_)eCT'+")]} (83) 

and apply the expansion of Section 4 to all the T-dependent terms of the 
r.h.s, of formula (83). The term I~I(t~,  t2) is then given by 

I l l ( t , ,  t2)= lira {E,/,o(Fl(c~r+,,)e Cr+',.r+'~-') E,ho(F2(q~r+,,_) eCT+',-')} 
T ~ :/_ 

- [ lim E,~~ eCr+'t'r+q-')] 
T ~ 

• [ lim E~~ e~:'+'-')] (84) 
T '  ~ :f_ 

Because of the Markov property, we have 

E 4,o( F2( ~ T + ,,_ ) e~" + ,~ - ' ) = E,h,,( Fz( ~ r + ,. _) eCT+'- ") 

and because individually each term has a limit, one gets that 

I i I ( tL ,  t ~ ) = O  

Let us consider now the second term of the expansion, 

I z D l I ( t l ,  tz) = lim {I,_DiE,bo(Fl(~bT+,.) F2(~br+,.) e Cr+', 

-- I2D] E~o(Fl( ~br + ,l ) eCT+',) 

• [ lim E4,o(F2(~r,+,, _) eCr'+")]} (85) 

Each IzD~ gives a sum of contribution labeled by some indexj~ 
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I f j l  > / T +  t2, then 

I2DIE~o(F1(C~T+, 1) F~_(~b T + ,  2) e e r + ' , )  

= D l Eq~o(F l (4) r+ ,I) eCr+'' 4. ) E~o(F,_(c~ r+ ,2) eej~ ) 

Thus again, because of the Markov property, the contributions indexed by 
Jl to (85) vanish when T--+ co. 

When j~ < T +  t 2, then each contribution from I 2 D  ~ gives an extra 
factor 

e--iT--j l) /8 <.~ e{tl -- t2)/8 

Repeating this type of argument shows that 

I ( t l ,  t2) <. K e  -~'t -,2~/s 

We have thus proved our assertion. 

7. NONGRADIENT SYSTEMS AND MORE GENERAL 
POTENTIAL FUNCTIONS 

All the calculations and results of the previous sections can be trivially 
extended with obvious changes to the case when the stochastic variables X 
are finite-dimensional vectors and the matrix A is nonsymmetric but has 
spectrum ~ whose real part is strictly positive. In this case, the covariance 
C given by (17) satisfies the inequality 

II C ( t i ,  t2)ll ~ Const IIMII exp( - m i n  ~a ;  It~ - t_,l) (86) 

where []. [[ is an operator norm in the space of the vector variable X and 
91t~; is the real part of the eigenvalue gi- All the estimates go through with 
minor changes. 

The expansion and the results have been given for pedagogical reasons 
for one-dimensional systems with a polynomial drift. The reason for the 
choice of polynomial drifts comes from the fact that when working with 
SPDE, i.e., th~ random variables are now ~b.,.(x), indexed by a space param- 
eter x e R", n = I, 2 ..... unbounded functions like polynomials are a good 
prototype of the main difficulties one will encounter. In analogy with 
quantum field theories, arbitrary polynomials are allowed for n = 0 and 1, 
Wick-ordered polynomials for n =2 ,  and very special polynomials for 
n/> 3, since one has to face nontrivial renormalization problems in this 
case. 
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For SODE, from the nature of the expansion, it is easy to see that the 
proof extends to local potentials V(~b.,.) where V is a C~_ function whose 
derivatives satisfy bound like 

I v ' " (4,) l  ~ K(,-! )= ~2/~, V , . 6Z  + 

where K is a constant and ~ and fl are some positive integers independent 
of r. Such a bound will not destroy the convergence, because the expecta- 
tion of the monomials will produce an (r!)/~ giving rise to a local ( r !p  § 
which in turn can be controlled like the usual local factorials (see Sec- 
tion 4.3). 

All the previous arguments hold in case the initial condition q~o is 
averaged with respect to a Gaussian-like probability measure, i.e., a 
measure v(~bo) such that for all 17 

f l 4o  l" dv(~bo) < OP" 

where C and c( are positive constants. 

8. R E M A R K S  ON THE S T R U C T U R E  OF THE E X P A N S I O N  FOR 
THE S T A T I O N A R Y  M E A S U R E  

We wish to emphasize that the construction of the invariant measure 
via the cluster expansion is a subtle process. This can be well illustrated in 
the case of the one-dimensional model considered in the previous section. 
Take the first term of the expansion given by Eq. (32), 

ESt(F(/b ~ ) e r ) 

and suppose we want to evaluate it by making an expansion in 2. To first 
order we have 

2 2ESt(F(~)I(~:~4"ds)+O(22) (87) ESt(F(~,))__~ESt(F(q~,) :q~4:) _ ~  

Let us take F(~b)= :~4: to have a nonzero contribution at this order. Then 
to order 2 we obtain 

ESt(F(q~t ) e r ) = - ~ 4![ 1 + 1(I - e-Z)]  -F 0 ( 2  2) (88) 
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On the other hand, calculating to the same order with the invariant 
measure ~t/lnv, o n e  h a s  

f ~ l , . v ( ~ ) F ( ~ )  = -~4[  + 0 ( 2  2) (89) 

One sees that the first two terms of the Girsanov exponent cooperate to 
give almost the right coefficient. This means that the defect must be com- 
pensated by other terms of the cluster expansion. Terms of order 2 appear 
only in A~ and B~ so that the compensating term will come from 
I2(A~ + B~ ). This can be verified by direct calculation. 

In the nongradient case, when the matrix A in Eq. (3) is nonsym- 
metric, the two terms of the Girsanov exponent appearing in (87) will have 
a very different structure. The first one depends only on M, while the 
second one depends explicitly on A. 

It is instructive to give their expression for a simple system. Let us take 
V of the form 

where 

V(#)=~. L :q~4: (90) 
i ~ l  

:~4:= q~4 _ 6M,,~b,.-" + 3M~ (91) 

To order 2, we have from the first term of the cluster expansion, taking 
F(~) = :~4: to have a nonzero contribution at this order, 

)" st/ a ) )~i~.~ ( ff "d' ATe3") - g e  -5_ e :44 
k . .  

= - - g 4 ! ~ M 4 k  ~ ' ~  dsCo(1, s) C~k(1,s)A f 
k --  j , k  

(92) 

where 

Cik( 1, S) = (e A~l -"~M)ik (93) 

For a generic A there is no simple connection between the two terms 
appearing in (92). 

We now consider a different aspect which is relevant in concrete 
calculations. If we examine the first terms of the expansion 
I~ E + 12 A~+ I2B~, we notice that I~ E and 12 B~ involve averages over tra- 
jectories defined on finite time intervals, while I2A~ has been decomposed 
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into an infinite sum of terms involving unit intervals separated by increas- 
ing times. The contributions from distant intervals, however, decrease 
exponentially due to the decay of the Ornstein-Uhlenbeck covariance, 
which provides the relevant relaxation time scale. This is interesting 
because if we compute these contributions with the help of numerical 
simulation, we have a precise criterion to decide its duration on the basis 
of the accuracy we desire. This argument of course applies also to higher 
order terms in the cluster expansion. 

We conclude by citing two very recent papers where cluster expansion 
ideas are used in the study of time evolutions, of which we became aware 
after the completion of the present work. I~t'~2~ 
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